SelalU aDa yang BarU
Ini adalah blog berisi penjelesan fenomena fisika dan alam dalam kehidupan sehari-hari. Diulas dengan bahasa yang menarik dan mudah dipahami.

Ketika karbon dioksida cair dalam tangki berubah menjadi gas karbon dioksida, suhunya cukup dingin untuk membekukan sebagian karbon dioksida menjadi “salju.” Akan tetapi mengapa demikian, gerangan? Itu terjadi karena gas karbon dioksida yang dimampatkan memuai begitu begitu mendapatkan kebabasannya. Lalu, apakah gas yang memuai otomatis menjadi dingin? Betul, perilaku gas memang begitu. Berikut ini alasannya.

Molekul-molekul dalam semburan gas yang sedang memuai mempunyai kekuatan yang cukup dahsyat untuk menembus apa pun yang menghalangi. Perhatikan desakan kuat ketika Anda menggunakan pemadam api itu. Jika tidak hati-hati, Anda bahkan dapat melontarkan bara yang masih menyala ke tempat lain. Dengan kata lain, molekul-molekul gas yang sedang memuai dapat menerjang apa pun – termasuk udara – dengan menghantam molekul-molekul penghalang tersebut.

Sewaktu molekul-molekul gas membentur molekul-molekul benda penghalang, mereka melepas sebagian energi dan mengalami perlambatan, sama seperti bola liar yang bergerak lebih lambat setelah membentur sebuah bola lain. Dan bila molekul-molekul gas bergerak lebih lambat ini mengandung arti bahwa temperatur gas tersebut lebih rendah.

Karbon dioksida dalam tangki pemadam api mengalami tekanan begitu tinggi sehingga ketika dibebaskan gas tersebut memuai sekali, disertai penurunan temperatur yang juga luar biasa. (Sumber: Robert L. Wolke dalam bukunya “What Einstein Didn’t Know”)

 

Peneliti Lembaga Penerbangan dan Antariksa Nasional (LAPAN) menilai fenomena Unidentified Flying Object (UFO) bukan sebagai bagian dari pembahasan secara scientific (ilmiah,red). Pasalnya, keberadaan UFO ini tidak pernah bisa dibuktikan secara ilmiah.

"Dalam nomenklatur kajian antariksa, UFO tidak pernah masuk sebagai kajian ilmiah," ujar Peneliti LAPAN, Thomas Djamaludin, Selasa (8/4).

Thomas mengakui bahwa ada sebagian masyarakat yang mengaku pernah menyaksikan atau melihat objek luar angkasa yang berbentuk seperti topi dan bercahaya, ataupun bentuk lainnya, dan menyebutnya sebagai UFO. Bahkan, dari informasi yang diperoleh Republika, pada Juni mendatang, pemburu UFO dari seluruh Indonesia akan berkumpul di Bandung untuk menantikan datangnya penampakan UFO. Mengenai hal ini, Thomas menegaskan, berbagai kesaksian dari orang yang pernah melihat benda luar angkasa yang disebut UFO ini tidak pernah bisa dibuktikan secara ilmiah. "Kesaksian-kesaksian itu sifatnya lebih personal saja," cetus dia.

Beberapa waktu yang lalu, kata Thomas, National Aeronautics and Space Administration (NASA) pernah melakukan kajian terhadap foto sebuah object yang bercahaya dan bentuknya mirip Apollo. Gambar objek tersebut difoto oleh salah seorang astronot saat penerbangan Apollo.

Dari hasil kajian NASA, kata Thomas, objek dalam foto itu ternyata salah satu bagian dari Apollo itu sendiri. Dengan demikian, kata dia, NASA pun tidak pernah memiliki bukti secara ilmiah adanya UFO.

Thomas menambahkan, dirinya pernah melihat di internet ada gambar makhluk luar angkasa yang tengah dibedah oleh sekelompok ilmuwan. Anehnya, kata dia, kalau hal itu memang itu benar terjadi, kenapa sampai sekarang, tidak pernah ada paper ilmiah yang menjelaskan soal itu.

"Bagi kalangan ilmuwan, hal ini merupakan sebuah prestasi yang dapat mengantarkannya memperoleh nobel. Jadi, tidak mungkin disembunyi-sembunyikan," cetus dia.

Meski begitu, Thomas menjelaskan, dalam nomenklatur astronomi, memang terdapat kajian khusus mengenai kemungkinan adanya kehidupan lain di luar Bumi. Nama kajian itu adalah Bio Astronomi.

Tapi, kata dia, dalam Bio Astronomi ini, kajiannya difokuskan pada kemungkinan-kemungkinan kehidupan lain di luar angkasa berdasarkan indikator-indikator tertentu yang memang bisa dibuktikan menjadi penunjang kehidupan.

Menurut Thomas, masih adanya sebagian masyarakat yang mempercayai UFO merupakan hak masyarakat. Meski demikian, Thomas menghimbau, jika ada masyarakat yang menyaksikan fenomena antariksa seperti benda bergerak disertai cahaya, sebaiknya segera melaporkan ke LAPAN.

"Nanti, kami akan melakukan kajian secara ilmiahnya sehingga bisa menjelaskan kepada masyarakat," jelas dia. (Sumber: forumsains.com)

 

Tumbuhan merupakan mahluk hidup yang bagi kita tidak terlihat seperti sebuah mahluk hidup karena ia tidak dapat bergerak. Mereka memang tidak memiliki alat gerak seperti kaki dan tangan yang terdapat pada hewan dan manusia, tetapi organ-organ mereka sangatlah kompleks untuk dipelajari. Ada beberapa tumbuhan yang sudah sepenuhnya berkembang menjadi tumbuhan lengkap yang memiliki daun, akar, batang, bunga dan buah. Ada juga tumbuh-tumbuhan yang tidak memiliki beberapa organ-organ tersebut. Namun, di setiap tumbuhan tersebut pasti ada jaringan pengangkutan terpenting yang terdiri dari xylem dan juga floem. Berikut ini, saya akan memaparkan betapa pentingnya mereka bagi proses kehidupan sebuah tanaman dan juga bagaimana mereka berperan untuk mengambil air dari dalam tanah dan kemudian menyebarkannya ke seluruh bagian tanaman agar semua organ tanaman dapat berkembang secara maksimal.

Pertama sekali, jaringan xylem memiliki dua fungsi dalam tanaman. Fungsi pertama adalah untuk mengangkut air dan juga mineral-mineral dari dalam tanah ke batang dan juga daun-daun. Fungsi kedua xylem adalah untuk menyangga tanaman itu sendiri sehingga ia tidak mudah jatuh atau roboh. Xylem sebenarnya berbentuk kolom-kolom panjang yang bagian tengahnya kosong. Kolom berbentuk tabung ini terdapat dari akar tanaman sampai ke daun-daun tanaman walaupun mereka sangatlah tipis. Oleh karena itu, xylem dan floem hanya dapat diteliti melalu mikroskop. Bagian tengah kolom ini merupakan bagian yang berkelanjutan dan tidak pernah putus walaupun tanaman itu memiliki banyak cabang. Untuk menguatkan xylem, di dinding kolom-kolom ini terdapat zat bernama lignin. Tabung-tabung xylem yang kosong dan berkelanjutan ini memudahkan tugas xylem untuk mengangkut air dan juga mineral-mineral sehingga tidak ada dari mereka yang tersangkut pada bagian-bagian sel tertentu (protoplasm). Selain itu, kehadiran lignin juga menguatkan tanaman agar ia tidak mudah roboh dan dapat berdiri tegak.

Jaringan kedua yang berperan penting dalam proses pengangkutan dalam tanaman ialah floem. Floem mengangkut gula sukrosa dan juga asam amino dari organ-organ tumbuhan yang berwarna hijau, terutama sekali daun, ke bagian-bagian lain dalam tumbuhan. Berbeda dari xylem, floem memiliki sel-sel yang bernama sieve tube sel, dan transportasi gula sukrosa dan asam amino dapat dilakukan melalui difusi dan juga aktif transport dari sel ke sel dalam floem. Oleh karena itu, makanan-makanan ini dapat menjangkau organ-organ tanaman dalam waktu yang sangat singkat agar mereka bisa melakukan respirasi dan berkembang.

Penyerapan air dari dalam tanah ke bagian atas tumbuhan memiliki arti bahwa tanaman tersebut harus melawan gaya gravitasi bumi yang selalu mengakibatkan benda jatuh ke bawah. Akan tetapi, tanaman berhasil melakukan hal itu. Kuncinya ialah tanaman-tanaman ini menggunakan tekanan akar, tenaga kapilari, dan juga tarikan transpirasi. Namun pada tanaman-tanaman yang sangat tinggi, yang berperan paling penting adalah tarikan transpirasi. Dalam proses ini, ketika air menguap dari sel mesofil, maka cairan dalam sel mesofil akan menjadi semakin jenuh. Sel-sel ini akan menarik air melalu osmosis dari sel-sel yang berada lebih dalam di daun. Sel-sel ini pada akhirnya akan menarik air yang diperlukan dari jaringan xylem yang merupakan kolom berkelanjutan dari akar ke daun. Oleh karena itu, air kemudian dapat terus dibawa dari akar ke daun melawan arah gaya gravitasi, sehingga proses ini terus menerus berlanjut. Proses penguapan air dari sel mesofil daun biasa kita sebut dengan proses transpirasi. Oleh itu, pengambilan air dengan cara ini biasa kita sebut dengan proses tarikan transpirasi dan selama akar terus menerus menyerap air dari dalam tanah dan transpirasi terus terjadi, air akan terus dapat diangkut ke bagian atas sebuah tanaman

Proses transpirasi ini selain mengakibatkan penarikan air melawan gaya gravitasi bumi, juga dapat mendinginkan tanaman yang terus menerus berada di bawah sinar matahari. Mereka tidak akan mudah mati karena terbakar oleh teriknya panas matahari karena melalui proses transpirasi, terjadi penguapan air dan penguapan akan membantu menurunkan suhu tanaman. Selain itu, melalui proses transpirasi, tanaman juga akan terus mendapatkan air yang cukup untuk melakukan fotosintesis agar keberlangsungan hidup tanaman dapat terus terjamin. (Sumber: forumsains.com)

 

MUNGKIN tidak ada objek astronomi yang sepopuler lubang hitam (black hole). Di dalam arena diskusi dengan masyarakat luas di setiap kesempatan, pertanyaan mengenai objek eksotik yang satu ini seakan tidak pernah lupa untuk dilontarkan. Siapa sangka, istilah yang pertama kali diberikan oleh John Archibald Wheeler pada 1969 sebagai ganti nama yang terlalu panjang, yaitu completely gravitational collapsed stars, ini menjadi sedemikian akrab di kalangan awam sekalipun?

Konsep lubang hitam pertama kali diajukan oleh seorang matematikawan-astronom berkebangsaan Jerman, Karl Schwarzschild, pada tahun 1916 sebagai solusi eksak dari persamaan medan Einstein (Relativitas Umum). Penyelesaian berupa persamaan diferensial orde dua nonlinear--yang dihasilkan Schwarzschild hanya dengan bantuan pensil dan kertas kala itu--sangat memikat Einstein. Pasalnya, relativitas umum yang bentuk finalnya telah dipaparkan Einstein di Akademi Prusia pada 25 November 1915, oleh penemunya sendiri "hanya" berhasil dipecahkan dengan penyelesaian pendekatan. Bahkan dalam perkiraan Einstein, tidak akan mungkin menemukan solusi eksak dari persamaan medan temuannya tersebut.

Istilah lubang hitam sendiri menggambarkan kondisi kelengkungan ruang-waktu di sekitar benda bermassa dengan medan gravitasi yang sangat kuat. Menurut teori relativitas umum, kehadiran massa akan mendistorsi ruang dan waktu. Dalam bahasa yang sederhana, kehadiran massa akan melengkungkan ruang dan waktu di sekitarnya. Ilustrasi yang umum digunakan untuk mensimulasikan kelengkungan ruang di sekitar benda bermassa dalam relativitas umum adalah dengan menggunakan lembaran karet sangat elastis untuk mendeskripsikan ruang 3 dimensi ke dalam ruang 2 dimensi.

Bila kita mencoba menggelindingkan sebuah bola pingpong di atas hamparan lembaran karet tersebut, bola akan bergerak lurus dengan hanya memberi sedikit tekanan pada lembaran karet. Sebaliknya, bila kita letakkan bola biliar yang massanya lebih besar (masif) dibandingkan bola pingpong, akan kita dapati lembaran karet melengkung dengan cekungan di pusat yang ditempati oleh bola biliar tersebut. Semakin masif bola yang kita gunakan, akan semakin besar tekanan yang diberikan dan semakin dalam pula cekungan pusat yang dihasilkan pada lembaran karet.

Sudah menjadi pengetahuan publik bila gerak Bumi dan planet-planet lain dalam tata surya mengorbit Matahari sebagai buah kerja dari gaya gravitasi, sebagaimana yang telah dibuktikan oleh Isaac Newton pada tahun 1687 dalam Principia Mathematica-nya. Melalui persamaan matematika yang menjelaskan hubungan antara kelengkungan ruang dan distribusi massa di dalamnya, Einstein ingin memberikan gambaran tentang gravitasi yang berbeda dengan pendahulunya tersebut. Bila sekarang kita menggulirkan bola yang lebih ringan di sekitar bola yang masif pada lembaran karet di atas, kita menjumpai bahwa bola yang ringan tidak lagi mengikuti lintasan lurus sebagaimana yang seharusnya, melainkan mengikuti kelengkungan ruang yang terbentuk di sekitar bola yang lebih masif. Cekungan yang dibentuk telah berhasil "menangkap" benda bergerak lainnya sehingga mengorbit benda pusat yang lebih masif tersebut. Inilah deskripsi yang sama sekali baru tentang penjelasan gerak mengorbitnya planet-planet di sekitar Matahari a la relativitas umum. Dalam kasus lain bila benda bergerak menuju ke pusat cekungan, benda tersebut tentu akan tertarik ke arah benda pusat. Ini juga memberi penjelasan tentang fenomena jatuhnya meteoroid ke Matahari, Bumi, atau planet-planet lainnya.

Radius kritis

Melalui persamaan matematisnya yang berlaku untuk sembarang benda berbentuk bola sebagai solusi eksak atas persamaan medan Einstein, Schwarzschild menemukan bahwa terdapat suatu kondisi kritis yang hanya bergantung pada massa benda tersebut. Bila jari-jari benda tersebut (bintang misalnya) mencapai suatu harga tertentu, ternyata kelengkungan ruang-waktu menjadi sedemikian besarnya sehingga tak ada satupun yang dapat lepas dari permukaan benda tersebut, tak terkecuali cahaya yang memiliki kelajuan 300.000 kilometer per detik! Jari-jari kritis tersebut sekarang disebut Jari-jari Schwarzschild, sementara bintang masif yang mengalami keruntuhan gravitasi sempurna seperti itu, untuk pertama kalinya dikenal dengan istilah lubang hitam dalam pertemuan fisika ruang angkasa di New York pada tahun 1969.

Untuk menjadi lubang hitam, menurut persamaan Schwarzschild, Matahari kita yang berjari-jari sekira 700.000 kilometer harus dimampatkan hingga berjari-jari hanya 3 kilometer saja. Sayangnya, bagi banyak ilmuwan kala itu, hasil yang diperoleh Schwarzschild dipandang tidak lebih sebagai sebuah permainan matematis tanpa kehadiran makna fisis. Einstein termasuk yang beranggapan demikian. Akan terbukti belakangan, keadaan ekstrem yang ditunjukkan oleh persamaan Schwarzschild sekaligus model yang diajukan fisikawan Amerika Robert Oppenheimer beserta mahasiswanya, Hartland Snyder, pada 1939 yang berangkat dari perhitungan Schwarzschild berhasil ditunjukkan dalam sebuah simulasi komputer.

Kelahiran lubang hitam

Bagaimana proses fisika hingga terbentuknya lubang hitam? Bagi mahasiswa tingkat sarjana di Departemen Astronomi, mereka mempelajari topik ini di dalam perkuliahan evolusi Bintang. Waktu yang diperlukan kumpulan materi antarbintang (sebagian besar hidrogen) hingga menjadi "bintang baru" yang disebut sebagai bintang deret utama (main sequence star), bergantung pada massa cikal bakal bintang tersebut. Makin besar massanya, makin singkat pula waktu yang diperlukan untuk menjadi bintang deret utama. Energi yang dimiliki "calon" bintang ini semata-mata berasal dari pengerutan gravitasi. Karena pengerutan gravitasi inilah temperatur di pusat bakal bintang menjadi meninggi.

Dari mana bintang-bintang mendapatkan energi untuk menghasilkan kalor dan radiasi, pertama kali dipaparkan oleh astronom Inggris Sir Arthur Stanley Eddington. Sir Eddington juga yang pernah memimpin ekspedisi gerhana Matahari total ke Pulau Principe di lepas pantai Afrika pada 29 Mei 1919 untuk membuktikan ramalan teori relativitas umum tentang pembelokan cahaya bintang di dekat Matahari. Meskipun demikian, fisikawan nuklir Hans Bethe-lah yang pada tahun 1938 berhasil menjelaskan bahwa reaksi fusi nuklir (penggabungan inti-inti atom) di pusat bintang dapat menghasilkan energi yang besar. Pada temperatur puluhan juta Kelvin, inti-inti hidrogen (materi pembentuk bintang) mulai bereaksi membentuk inti helium. Energi yang dibangkitkan oleh reaksi nuklir ini membuat tekanan radiasi di dalam bintang dapat menahan pengerutan yang terjadi. Bintang pun kemudian berada dalam kesetimbangan hidrostatik dan akan bersinar terang dalam waktu jutaan bahkan milyaran tahun ke depan bergantung pada massa awal yang dimilikinya.

Semakin besar massa awal bintang, semakin cepat laju pembangkitan energinya sehingga semakin singkat pula waktu yang diperlukan untuk menghabiskan pasokan bahan bakar nuklirnya. Manakala bahan bakar tersebut habis, tidak akan ada lagi yang mengimbangi gravitasi, sehingga bintang pun mengalami keruntuhan kembali.

Nasib akhir sebuah bintang ditentukan oleh kandungan massa awalnya. Artinya, tidak semua bintang akan mengakhiri hidupnya sebagai lubang hitam. Untuk bintang-bintang seukuran massa Matahari kita, paling jauh akan menjadi bintang katai putih (white dwarf) dengan jari-jari lebih kecil daripada semula, namun dengan kerapatan mencapai 100 hingga 1000 kilogram tiap centimeter kubiknya! Tekanan elektron terdegenerasi akan menahan keruntuhan lebih lanjut sehingga bintang kembali setimbang. Karena tidak ada lagi sumber energi di pusat bintang, bintang katai putih selanjutnya akan mendingin menjadi bintang katai gelap (black dwarf).

Untuk bintang-bintang dengan massa awal yang lebih besar, setelah bintang melontarkan bagian terluarnya akan tersisa bagian inti yang mampat. Jika massa inti yang tersisa tersebut lebih besar daripada 1,4 kali massa Matahari (massa Matahari: 2x10 pangkat 30 kilogram), gravitasi akan mampu mengatasi tekanan elektron dan lebih lanjut memampatkan bintang hingga memaksa elektron bergabung dengan inti atom (proton) membentuk netron. Bila massa yang dihasilkan ini kurang dari 3 kali massa Matahari, tekanan netron akan menghentikan pengerutan untuk menghasilkan bintang netron yang stabil dengan jari-jari hanya belasan kilometer saja. Sebaliknya, bila massa yang dihasilkan pasca ledakan bintang lebih dari 3 kali massa Matahari, tidak ada yang bisa menahan pengerutan gravitasi. Bintang akan mengalami keruntuhan gravitasi sempurna membentuk objek yang kita kenal sebagai lubang hitam. Bila bintang katai putih dapat dideteksi secara fotografik dan bintang netron dengan teleskop radio, lubang hitam tidak akan pernah dapat kita lihat secara langsung!

Mengenali lubang hitam

Bila memang lubang hitam tidak akan pernah bisa kita lihat secara langsung, lantas bagaimana kita bisa meyakini keberadaannya? Untuk menjawab pertanyaan ini, John Wheeler sebagai tokoh yang mempopulerkan istilah lubang hitam, memiliki sebuah perumpamaan yang menarik. Bayangkan Anda berada di sebuah pesta dansa di mana para pria mengenakan tuksedo hitam sementara para wanita bergaun putih panjang. Mereka berdansa sambil berangkulan, dan karena redupnya penerangan di dalam ruangan, Anda hanya dapat melihat para wanita dalam balutan busana putih mereka. Nah, wanita itu ibarat bintang kasat mata sementara sang pria sebagai lubang hitamnya. Meskipun Anda tidak melihat pasangan prianya, dari gerakan wanita tersebut Anda dapat merasa yakin bahwa ada sesuatu yang menahannya untuk tetap berada dalam "orbit dansa".

Demikianlah para astronom dalam mengenali keberadaan sebuah lubang hitam. Mereka menggunakan metode tak langsung melalui pengamatan bintang ganda yang beranggotakan bintang kasat mata dan sebuah objek tak tampak. Beruntung, semesta menyediakan sampel bintang ganda dalam jumlah yang melimpah. Kenyataan ini bukanlah sesuatu yang mengherankan, sebab bintang-bintang memang terbentuk dalam kelompok. Hasil pengamatan menunjukkan bahwa di galaksi kita, Bima Sakti, terdapat banyak bintang yang merupakan anggota suatu gugus bintang ataupun asosiasi.

Telah disebutkan di atas bahwa medan gravitasi lubang hitam sangat kuat, jauh lebih kuat daripada bintang kompak lainnya seperti bintang “katai putih” maupun bintang netron. Dalam sebuah sistem bintang ganda berdekatan, objek yang lebih masif dapat menarik materi dari bintang pasangannya. Demikian pula dengan lubang hitam. lubang hitam menarik materi dari bintang pasangan dan membentuk cakram akresi di sekitarnya (bayangkan sebuah donat yang pipih bentuknya). Bagian dalam dari cakram yang bergerak dengan kelajuan mendekati kelajuan cahaya, akan melepaskan energi potensial gravitasinya ketika jatuh ke dalam lubang hitam. Energi yang sedemikian besar diubah menjadi kalor yang akan memanaskan molekul-molekul gas hingga akhirnya terpancar sinar-X dari cakram akresi tersebut. Sinar-X yang dihasilkan inilah yang digunakan oleh para astronom untuk mencurigai keberadaan sebuah lubang hitam dalam suatu sistem bintang ganda. Untuk lebih meyakinkan bahwa bintang kompak tersebut benar-benar lubang hitam alih-alih bintang “katai putih” ataupun bintang netron, astronom menaksir massa objek tersebut dengan perangkat matematika yang disebut fungsi massa. Bila diperoleh massa bintang kompak lebih dari 3 kali massa Matahari, besar kemungkinan objek tersebut adalah lubang hitam. (Sumber: forumsains.com)

 

Banyak yang tidak masuk akal seputar cerita tentang dentuman atau ledakan sonik. Columbia Encyclopedia edisi ke-5 (1993) mengatakan, “Sebuah benda seperti pesawat terbang, misalnya, menghasilkan bunyi. Ketika bunyi benda itu mencapai atau melebihi kecepatan bunyi, benda tersebut berhasil menyusul kebisingannya sendiri.”

Di pihak lain, banyak orang percaya ada sesuatu hal yang disebut “perintang bunyi” atau sound barrier, juga bahwa ketika pesawat terbang melewatinya ia mengeluarkan dentuman keras, seolah-olah ia menabrak dinding kaca yang tidak kelihatan. Itu juga salah. Semua orang pasti tergiring ke pemikiran seperti itu akibat penggunaan istilah “perintang” atau barrier. Istilah ini tidak pernah dimaksudkan untuk menyiratkan perintang fisik di angkasa sana, tetapi hanya bahwa kecepatan bunyi menghadirkan rintangan terhadap pengembangan pesawat terbang lebh cepat. Yang dimaksud sound barrier adalah perintang dalam konteks perancangan aeronotika, bukan perintang fisik. Bagaimanapun, ketika pesawat “memintas” sound barrier, jelas ada sejumlah tegangan fisik yang dialami pesawat akibat gelombang kejut (shockwave).

Perintang sesungguhnya terhadap penerbangan supersonik ditimbulkan oleh kecepatan bunyi sendiri. (Dan tentu saja supersonik artinya lebih cepat daripada kecepatan bunyi; sedangkan ultrasonic merujuk ke bunyi dengan frekuensi lebih tinggi daripada yang dapat didengar manusia.) Sesungguhnyalah banyak hal unik terjadi ketika benda mendekati kecepatan bunyi di udara.

Pesawat terbang menembus udara dengan kecepatan beberapa ratus km/jam. Kecepatan cukup rendah ini memungkinkan molekul-molekul udara tetap santai ketika harus menyibak memberi jalan; situasinya kurang lebih seperti ketika seseorang berjalan pelan-pelan menyibak kerumunan orang. Akan tetapi ketika kecepatan pesawat menjadi sebanding dengan kecepatan molekul-molekul, molekul-molekul tersebut tidak sempat menghindar; mereka bertumpuk di tepi-tepi depan pesawat dan terdorong bersamanya. Penumpukan udara bertekanan secara cepat ini menghasilkan “kejutan udara” atau gelombang kejut, yang berwujud dentuman keras. Gelombang bunyi tersebut memancar ke segala arah dan dapat terdengar sebaga sebuah ledakan oleh orang-orang dibawah sana.

Apa kaitan semua tadi dengan kecepatan bunyi? Baiklah, bunyi tidak lain adalah serangkaian pemampatan dan pemuaian udara. Jika molekul-molekul udara berkeliaran dengan kecepatan tertentu, maka ada batas terhadap seberapa cepat udara dapat dimampatkan dan dimuaikan, karena molekul-molekul tidak dapat dimampatkan dan dimuaikan lebih cepat daripada gerak masing-masing terhadap yang lain. Itu sebabnya kecepatan molekul-molekul udara memberi batas terhadap seberapa cepat bunyi boleh melaluinya.

Bunyi akan merambat lebih cepat di udara hangat ketimabng di udara sejuk dan bunyi juga melaju lebih cepat di udara padat bertekanan tinggi. Itu sebabnya pesawat supersonik beroperasi paling baik di ketinggian sangat tinggi yang dingin, karena mereka tidak perlu melaju terlalu kencang untuk melampaui kecepatan bunyi. Pada ketinggian 9 km di atas permukaan laut, udara cukup dingin dan tipis sehingga kecepatan bunyi hanya 1100 km/jam. (Sumber: forumsains.com)

 

Mengapa awan berwarna putih kecuali menjelang hujan badai, dan mengapa pula awan hujan berwarna hitam? Berikut penjelasannya.

Masalah warna awan terkait dengan besar butir-butir air di dalamnya. Memang begitulah awan: kumpulan butir-butir air yang sangat kecil. Buti-butir air itu begitu kecil sehingga karena mengalami benturan terus-menerus oleh moleku-molekul udara mereka tetap bergantung di udara dan tidak terpengaruh oleh gravitasi – sampai saat hujan. Butir itu terus menguap dan mengembun. Itu sebabnya awan senantiasa berubah bentuk.

Butir-butir air dalam sebuah awan putih seperti bola-bola Kristal sangat kecil. Jadi, mereka memantulkan dan membuyarkan cahaya ke semua arah. Seperti air dalam bentuk-bentuk lain – es dan salju – mereka memantulkan dan membuyarkan semua panjang gelombang (warna) cahaya secara adil, maka cahaya matahari yang sampai ke mata kita tetap berwarna putih. Apabila butir-butirnya lebih kecil, lebih kecil dari panjang gelombang cahaya, awan akan ikut berwarna biru seperti langit.

Sementara itu, awan hujan atau hujan badai, seperti yang Anda harapkan, sarat dengan air, dan menunggu peluang yang tepet untuk mengacaukan piknik Anda. Butir-butir ir dalam awan tersebut begitu tebal sehingga menghalangi cahaya dari matahari, amak awan tersebut relative tampak gelap dibanding langit cerah. Bagaimanapun, sesungguhnya awan itu tidak hitam, melainkan hanya bayangannya yang hitam. (Robert L. Wolke dalam bukunya “What Einstein Didn’t Know”)